SHORT PAPERS
IV. CONCLUSIONS

As a numerical technique, the least square error minimization
is near in style to point matching and Fourier matching. All three
methods are versatile in being able to join up a patchwork of regions,
each with a complete expansion that exactly safisfies the differential
equations of the problem. In each method, some different criterion
is put forward to approximately satisfy the remaining boundary
conditions.

Point matching is undoubtedly the easiest scheme to implement,
as it replaces integration by sampling of fields at discrete points.
In its simple form, however, it is known that it can fail to converge or
give useful answers [77],[13]. Fourier matching and least squares
both involve integration of the boundary residuals (boundary
errors). Inner products are needed of all boundary residuals formed
with either a set of test functions (Fourier) or the same boundary
residuals (least squares).

In the earlier sections, it has been demonstrated that the least
squares method, as used for scattering problems, can equally be
applied to eigenvalue problems. In Section ITI, examples are given of
two such applications, the microstrip example being taken as a
test case to compare with Fourier matching. For this example, the
field analysis leading to the formulation of the matrix elements is
very similar for the two techniques; in each case, four integrals are
required along a boundary interface. The two matrix orders are the
same for the same choice of expansion sets. The least squares ap-
proach requires the (lowest eigenvalue) solution of areal, symmetric,
positive-definite matrix whereas Fourier matching requires the
evaluation of the determinant of a real but nonsymmetric and non-
definite matrix. Least squares therefore needs half the storage for
the matrix elements. In this work, the least squares matrix was
solved by Householder tridiagonalization [127 followed by Sturm
sequence and bisection—the Fourier matrix by Gaussian elimina-
tion with partial pivoting [14].

For the least squares, solution can be via inverse iteration [15],
with Choleski decomposition [14]. Whether using the Fourier or
least squares approach, computing time is likely to be comparable
for the evaluation of the matrix elements; similarly, for the solution
of the matrix. There is therefore little between the methods, in
terms of computing time, for a given matrix order.

Overall, the least squares approach would seem to have two
potentially important advantages. Firstly, by the empirical choice
of optimum weighting factors with low-order matrices these factors
can then be used to advantage for higher matrix orders, and con-
siderable acceleration of convergence has been obtained compared
with Fourier matching. Best weighting factors were found to occur
when arranged (as is easily done) for equal contribution to the error
norm from the different boundary residuals. Secondly, in contrast
to point matching (and as described in [17,[17], and [187]) it is
rigorously convergent.
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The Microstrip Double-Ring Resonator
INGO WOLFF axp WOLFGANG MENZEL

Abstract—The resonance frequencies and the fields of a microstrip
double-ring resonator are discussed. It is shown that no pure even or
odd mode can be excited on the resonator. Therefore it is concluded
that the microstrip double-ring resonator principally cannot be used
to measure the phase velocities of the even and the odd modes on a
coupled microstrip line.

I. INTRODUCTION

Gould and Talboys [1] described a method for measuring the
wavelengths on coupled microstrip lines, using a double-ring resona-
tor. The described method has been used by Getsinger [27 too, to
prove a theory for calculating the even- and odd-mode wavelengths.
Gould and Talboys [1] assumed that an even and an odd mode can
be excited on the double-ring resonator despite the fact that the
two coupled rings are of different lengths. Furthermore they de-
scribed that they measured an additional splitting of the resonance
frequencies in the case of loosely coupled rings, using a field probe
to detect the different resonances.

II. THE STRAIGHT MICROSTRIP DOUBLE-LINE
RESONATOR OF DIFFERENT LINE LENGTHS

To get a first insight into the field distribution of a double-ring
resonator, the resonator is unrolled and a resonator of two straight
coupled microstrip lines, as shown in Fig. 1, is considered. This
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Fig. 1. Resonance frequencies and structure of the straight double-line
resonator of constant length I + Al. Resonance frequencies in depend-
ence on the difference Al of the line lengths. Substrate material Poly~
guide (& = 2.32, A = 0.156 cm). Resonator length I 4+ Al = 10.01 cm,
w = 0.44 cm, s = 0.5 cm. O Experimental results.

resonator can be used to give a first approximation for the fields of
the double-ring resonator, despite the fact that the conditions for the
electromagnetic fields on both resonators are not really identical
(the line of length Al (Fig. 1) is not coupled to the other line, the
linear pair has one asymmetrical termination, whereas in the case
of the ring, the difference of the line lengths is uniformly distributed
around the ring). Nevertheless the behavior of both resonators
should be very similar.

To caleulate the resonance frequencies and the field distributions
of the straight double-line resonator as shown in Fig. 1, a coupled
microstrip line of length I, which is connected to a short piece of an
open-ended microstrip line of length Al at one port and which is
open ended at all other ports, is considered. From the equations for
the voltages and the currents of the even and the odd mode on that
line the following homogeneous set of equations for the voltages at
- ports U;—~U, can be derived:

YulUi + YUz + Yi3Us + YUy = 0
YU + YUz + YulUs + YUy =0
YisUr + YU + (Yu + 1/Z2)Us + YUs = 0
YUy + YUs + YuUs + YuUs = 0. 1)

Y (G = 1,2,3,4) are the elements of the admittance matrix of a pair

of coupled lines
s cot 6, n cot 8,
N\ 20 " Za

Vi = o cot8, cotb,
TN Ze  Ze

Yu
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considering the symmetry and the reciprocity of the structure. 6.
and 0, are the electrical lengths of the line of geometrical length I
for the even and the odd mode; Zo. and Zg, are the characteristic
impedances of the even and the odd modes, respectively. Z in (1) is
the characteristic impedance of the uncoupled line of length Al

Equation (1) only has a solution if the determinant of the system
is zero, meaning

(Y 4+ Y)? — (Y3 + Y1)2) ((Yu — Y12)2 — (Y13 — Y)?)
+ (Yu/Z)[Yu: — Y12 — Y12 — Y12 + CYuYuY/Yu)] = 0.
(3)

The zeros of (3) in dependence on the frequency can be calculated
numerically, yielding the resonance frequencies of the resonator.

Fig. 1 shows the resonance frequencies of a resonator of constant
length 1 + Al = 10.01 ¢m on Polyguide substrate material (e =
2.32) for different values of Al. The measured resonance frequencies
are somewhat smaller than the theoretical ones due to the neglected
end effects of the resonators. This is true especially for the higher
order resonances. Nevertheless the agreement between theory and
experiment is good.

The calculated voltages and currents of the resonator show that
the field distribution of the resonator is not symmetrical because of
the unsymmetrical loading at the four ports. These calculations
are in very good agreement with experimental results of resonators,
which are excited highly symmetrical. Fig. 2(a) and (b) shows the
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Fig. 2. Field component E, of four resonances of the straight double-

line resonator with lines of different lengths as a function of the co-
ordinate z. Resonator dimensions as in Fig. 1, Al = 04 cm.
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measured field component of the electric field perpendicular to the
substrate surface, measured with a field probe at different resonance
frequencies. The field distribution is very unsymmetrical, though
it still has the characteristics of the odd mode (zero between the
conductors [37: Fig. 2(a), f2 = 2.19 GHz and Fig. 2(b), f2 = 3.276
GHz) and of the even mode (no zero between the conductors: Fig.
2(a), fi = 2.08 GHz and Fig. 2 (b), fi = 3.11 GHz). Both field
distributions can be interpreted as a superposition of the fields of an
even and an odd mode. The results of the measurements are (neglect-
ing the sinus dependence of the amplitudes on the z-coordinate)
nearly independent of the length coordinate 2 of the resonator,
excluding the ends of the resomators. It can be excluded that the
unsymmetrical field distribution results from the influence of dis-
sipation, for in the case of Al = 0 a symmetrical field distribution
can be measured if the resonator is excited symmetrically [37].

I11. THE DOUBLE-RING RESONATOR

Gould and Talboys [1] described that they measured a splitting
of the even and the odd modes of the double-ring resonator. They
interpreted this splitting as the resonances of the two single rings
of different lengths. The authors of this paper tried intensively to
mesasure this splitting, but they never succeeded. From the notice
given in [17] that the splitting only has been measured using field
probes, it is suggested that the splitting of the resonance frequencies
is due to the disturbance of the symmetry of the resonator as de-
scribed in {47

As in the case of the straight double-line resonator the field dis-
tribution of the doublering resonator has been measured. Fig. 3
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Fig. 3. Field component E, of four resonances of the double-ring re-
sonator. (a) Resonator dimensions: r4 = 6.84 cm, w = 0.44 cm, s =
0.30 cm, k = 0.156 cm. Substrate material Polyguide (r4 is the outer
radius of the outer ring). (b) Resonator dimensions: r4 = 6.84 cm,
w =0.44 ¢m, s = 0.05 cm, h = 0.156 cm. Substrate material Poly-
guide.
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shows the measured field distributions of two adjoint resonances of
a resonator 1) with large distance s between the lines and 2) with
small distance s between the lines. The field distributions have
been measured at ¢ = 180° with the excitation at ¢ = 0°. The
resonances are principally, as Fig. 3 shows, resonances of the single
rings; the field distribution is very unsymmetrical, though the
characteristics of the even and the odd modes of a symmetrical
straight line resonator still can be detected (e.g., zero of the “odd
mode’’ between the lines). Nevertheless the field distributions
clearly show that no pure even or odd mode can be excited.

To find a method to calculate the resonance frequencies of the
double-ring resonator approximately, three different methods have
been examined. Firstly, a mean radius r, = (Fmo + Tme) /2 (fmo is
the mean radius of the outer ring, and 7,,; is the mean radius of the
inner ring) can be defined, to calculate the resonance frequencies
by assuming that an even and an odd mode are excited on the ring
resonator (mean circumference I, = 277,). This leads to the
resonance frequencies

n*Co m=Cy
= g =
Un (eotse) L (eotto) 2

where e and e, are the effective dielectric constants of the even
and the odd modes on a straight coupled microstrip line; ¢ is the
phase velocity of light in vacuum. .

As Fig. 4 shows, the so calculated resonance frequencies are in
quite good agreement with experimental results, as long as the
distance between the lines is small (s < 0.1 em for a resonator on
Polyguide material, » = 0.156 cm). For larger values of s the agree-
ment between theory and experiment becomes worse. The theoretical
resonance frequencies of the “even’” and the “odd mode” become
identical for large values of s, whereas the differences between the
experimental resonance frequencies of the ‘“‘even’” and the ‘“‘odd
mode”’ become larger with growing s.

A second approximation for the resonance frequencies can be

bl myn = 1,2, (4)
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Fig. 4. Resonance frequencies of the double-ring resonator as a function
of the distance s between the rings. calculated by (4), —+—+— .
calculated by (5), — O— O— experimental results. Resonator di-
mensions: 74 = 6.84 cm = const, w = 0.44 cm, = 0.156 cm. Sub-
strate material Polyguide (r4 is the outer radius of the outer ring).
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derived by assuming that the resonances are those of the single
rings. This leads to the resonance frequencies

N eCy

2T (ot 2

meCy

5 =
2T s (eeff)lﬂ ’

(5)

m,n = 1,2,0¢»

fi

where e is the effective dielectric constant of the single microstrip
line of the same width w as the resonator has. As the field distribu-
tions in Fig. 3 show, (5) should be at least a first approximation
for the resonance frequencies, because the resonances are mainly
those of the single rings. Fig. 4 shows that (5) is quite a good ap-
proximation, especially the growing difference between fi and fa;
with growing distance, s is described quite well. Up to the fifth higher
order resonance (n = 5, m = 5), the accuracy of (5) is better than
3 percent for all resonators which have been examined (0.05 cm < s
< 0.5 cm, Polyguide material, ¢ = 2.32, b = 0.156 cm), whereas
the agreement between (4) and the experimental results is not so
good (accuracy of about 5 percent for fi and about 9 percent for fs,
m =4,n = 4,and s = 0.5 cm).

As has been shown in Section I1, the unrolled double-ring resonator
is the straight double-line resonator of different line lengths as
shown in Fig. 1. So the n-)\,resonance frequencies of the straight
double-line resonator should be an approximation for the resonance
frequencies of the double-ring resonator. Fig. 5 shows the comparison
between the n+\,-resonance frequencies of the straight double-line
resonator and the measured resonance frequencies of the double-
ring resonators. The agreement between theory and experiment is
excellent for all values of s, as long as the mode numbers n,m are
small (n,m < 3). The deviation between theory and experiment
increases with the increasing value of n,m. This is due to the fact that
with larger n,m (meaning with increasing resonance frequencies)
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Fig. 5. Resonance frequencies of the double-ring resonator as a func-
tion of the distance s between the rings. calculated by (3), ©
experimental results. Resonator dimensions as in Fig. 4. ’
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the difference Al of the circumferences of the two rings becomes of
the order A,/2, which leads to a bad approximation of the double-
ring resonator by the straight double-line resonator.

In conclusion, as far as we think, the double-ring resonator princi-
pally is not a good arrangement to measure the phase velocities of
the even and the odd modes of a coupled microstrip line. Only in
the case of very closely coupled lines can it be used to measure
vphe and Vpno, for in this case all three described theories are good
approximations for the resonance frequencies and, e.g., (4) can be
used to measure e and eqr0. Furthermore the mean circumference
of the resonator in this case should be larger than 5\, to avoid the
influence of the curvature of the lines on the resonance frequencies
(see, e.g, [571).
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A Coupled-Line Model for Dispersion in
Parallel-Coupled Microstrips

HERBERT J. CARLIN, FELLOW, IEEE, AND
PIER P. CIVALLERI, MEMBER, IEEE

Abstract—A new circuit model is derived for parallel-coupled
microstrip consisting of two separate pairs of coupled lines. Each
pair consists of a homogenoeus TEM line coupled to a homogeneous
TE line. One pair represents the hybrid even mode, the other rep-
resents the odd mode. Data calculated from the model are compared
with experimental dispersion data for various parallel-coupled micro-
strip geometries. Agreement is excellent.

The procedure for deriving the equivalent circuit is an example of
a general technique for using coupled lines to model longitudinally
uniform but transversely inhomogeneous lossless waveguide.

The representation of fields in longitudinally uniform but trans-
versely inhomogeneous metallic-bound waveguides by the use of an
infinite number of coupled TE and TM transmission lines was first
introduced by Schelkunoff [1]. More recently, it was shown that by
appropriately truncating the Schelkunoff representation, one ean ob-
tain practical models consisting of a finite number of coupled lines,
from which the propagation functions of the structure can be approxi-
mated [2]. Moreover, even in cases in which the Schelkunoff param-
eters cannot be easily calculated, a practical coupled-line model can
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