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IV. CONCLUSIONS

As a numerical technique, the least square error minimization

is near in style to point matching and Fourier matching. .411three

methods are versatile in being able to join up a patchwork of regions,

each with a complete expansion that exactly satisfies the differential
equations of the problem. In each method, some dlff erent criterion
is put forward to approximately satisfy the remaining boundary
conditions.

Point matching is undoubtedly the easiest scheme to implement,

as it replaces integration by sampling of fields at discrete points.

In its simple form, however, it is known that it can fail to converge or
give useful answers [7], [13]. Fourier matching and least squares

both involve integration of the boundary residuals (boundary

errors). Inner products are needed of all boundary residuals formed

with either a set of test functions (Fourier) or the same boundary

residuafs (least squares).

In the earlier sections, it has been demonstrated that the least

squares method, as used for scattering problems, can equally be

applied to eigenvalue problems. In Section III, examples are given of
two such applications, the microstrip example being taken as a
test cnse to compare with Fourier matching. For thk example, the
field analysis leading to the formulation of the matrix elements is

very similar for the two techniques; in each case, four integrals are
required along a boundary interface. The two matrix orders are the

same for the same choice of expansion sets. The lemt squares ap-

proach requires the (lowest eigenvalue) solution of a real, symmetric,

positive-definite matrix whereas Fourier matching requires the

evaluation of the determinant of a real but nonsymmetric and non-

definite matrix. Least squares therefore needs half the storage for

the matrix elements. In thk work, the least squares matrix was

solved by Householder tridlagonalization [12] followed by Sturm

sequence and bisection—the Fourier matrix by Gaussian elimi na-
tion with partial pivoting [14].

For the least squares, solution can be via inverse iteration [15],
with Choleski decomposition [14]. Whether using the Fourier or
lea+, squares approach, computing time is likely to be comparable

for the evaluation of the matrix elements; similarly, for the solution

of the matrix. There is therefore little between the methods, in

terms of computing time, for a given matrix order.

Overall, the least squares approach would seem to have two

potentially important advantages. Firstly, by the empirical choice
of optimum weighting factors with low-order matrices these factors

can then be used to advantage for higher matrix orders, and con-
siderable acceleration of convergence has been obtained compared

with Fourier matching. Best weighting factors were found to occur
when arranged (as is easily done) for equal contribution to the error
norm from the different boundary residuals. Secondly, in contrast

to point matching (and as described in [1], [17], and [18]) it is

rigorously convergent.
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The Microstrip Double-Ring Resonator

INGO WOLFF AND WOLFGANG MENZEL

Absfract—The resonance frequencies and the fields of a microstrip
double-ring resonator are discussed. It is shown that no pure even or

odd mode can be excited on the resonator. Therefore it is concluded

that the rnicrostrip double-ring resonator principally cannot be used

to measure the phase velocities of the even and the odd modes on a
coupled microstrip line.

I. INTRODUCTION

Gould and Talboys [1] described a method for measuring the
wavelengths on coupled microstrip lines, using a double-ring resona-

tor. The described method has been used by Getsinger [2] too, to
prove a theory for calculating the even- and odd-mode wavelengths.

Gould and Talboys [1] assumed that an even and an odd mode can
be excited on the double-ring resonator despite the fact that the

two coupled rings are of cliff erent lengths. Furthermore they de-
scribed that they measured an additional splitting of the resonance

frequencies in the case of loosely coupled rings, using a field probe
to detect the different resonances.

II. THE STRAIGHT MICROSTRIP DOUBLE-LINE
RESONATOR OF DIFFERENT LINE LENGTHS

To get a first insight into the field distribution of a double-ring
resonator, the resonator is unrolled and a resonator of two straight
coupled mi crostrip lines, as shown in Fig. 1, is considered. This
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Ilig. 1. Resonance frequencies and structure of the straight double-line
resonator of constant length 1 + Al. Resonance frequencies in depend-
ence on the difference At of the line lengths. Substrate material Poly-
guide (e, = 2.32, h = 0.156 cm). Resonator length 1-1- At = 10.01 cm,
w = 0.44 cm, s = 0.5 cm. o Experimental results.

resonator can be used to give a first approximation for the fields of

the double-ring resonator, despite the fact that the conditions for the
electromagnetic fields on both resonators are not really identical

(the ~ne of length Al (Fig. 1) is not coupled to the other line, the

linear pair has one asymmetrical termination, whereas in the case

of the ring, the cliff erence of the line lengths is uniformly dktributed

around the ring). Nevertheless the behavior of both resonators

should be very similar.
To calculate the resonance frequencies and the field distributions

of the straight double-line resonator as shown in Fig. 1, a coupled

microstrip line of length t, which is connected to a short piece of an
open-ended microstrip line of length Al at one port and which is
open ended at all other ports, is considered. From the equations for
the voltages and the currents of the even and the odd mode on that
line the following homogeneous set of equations for the voltages at
ports U1–U4 can be derived:

YI,U, + YJJ, + Y13U3 + Y14U4 = O

Y,JJI + YIIU2 + YMU3 + Y13U4 = O

YHU, + YMU2 + ( Y,, + 1/2) U, + Y12U4 = O

YJJ, + Y,,U, + Y,,U, + YUU4 = O. (1)

Ylj (j = 1,2,3,4) are the elements of the admittance matrix of a pair
of coupled lines
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considering the symmetry and the reciprocity y of the structure. tle

and tl, are the electrical lengths of the line of geometrical length t

for the even and the odd mode; Z,e and Z,o are the characteristic

impedances of the even and the odd modes, respectively. Z in (1) is

the characteristic impedance of the uncoupled line of length At.
Equation (1) only has a solution if the determinant of the system

is zero, meaning

((y,{ + Y,z)2 – (YI, + Y14)2)((Y11 – YIZ)2 – (YI, – Y14)2)

+ (y,l/z) . [Y112 — Y122 — Y132 — YJ + (zy12y13y14/yll) 1 = 0.

(3)

The zeros of (3) in dependence on the frequency can be calculated

numerically, yielding the resonance frequencies of the resonator.

Fig. 1 shows the resonance frequencies of a resonator of constant

length Z + At = 10.01 cm on Polyguide substrate material (e, =

2.32) for different values of Al. The measured resonance frequencies

are somewhat smaller than the theoretical ones due to the neglected
end effects of the resonators. This ie true especially for the higher
order resonances. Nevertheless the agreement between theory and
experiment is good.

The calculated voltages and currents of the resonator show that

the field distribution of the resonator is not symmetrical because of

the unsymmetrical loading at the four ports. These calculations
are in very good agreement with experimental results of resonators,

which are excited highly symmetrical. Fig. 2 (a) and (b) shows the
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Fig. 2. Field component Ev of four resonances of the straight doubl~
line resonator with lines of different lengths as a function of the co-
ordinate z. Resonator dimensions as in Fig. 1, Al = 0.4 cm.
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measured field component of the electric field perpendicular to the

substrate surface, measured with afield probe at different resonance

frequencies. The field dktribution is very unsymmetrical, though

it still has the characteristics of the odd mode (zero between the

conductors [3]: Flg.2(a), fj = 2.19GHz and Fig. 2(b), ~t = 3.276

GHz) andofthe even mode (nozero between theconductors: Fig.
2(a), ~, =2.08 GHz and Fig. 2 (b), ~, =3.11 GHz). Both field

dktributions can be interpreted as a superposition of the fields of an
even andanodd mode. Theresults of themeasurements are (neglec&
ing the sinus dependence of the amplitudes on the z-coordinate)

nearly independent of the length coordinate z of the resonator,
excludlng the ends of the resonators. It can be excluded that the

unsymmetrical field dktribution results from the influence of dis-
sipation, for in the case of Al = O a symmetrical field dktribution

can be measured if the resonator is excited symmetrically [3].

III. THE DOUBLE-RING RESONATOR

Gould and Talboys [1] described that they measured a splitting
of the even and the odd modes of the double-ring resonator. They
interpreted thk, splitting as the resonances of the two single rings

of different lengths. The authors of this paper tried intensively to
measure this splitting, but they never succeeded. From the notice

given in [1] that the splitting only has been measured using field

probes, it is suggested that the splitting of the resonance frequencies

ie due to the disturbance of the symmetry of the resonator as de-

scribed in [4].

As in the case of the straight double-line resonator the field dis-

tribution of the double-ring resonator has been measured. Fig. 3
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Fig. 3. Field component Ev of four resonances of the double-ring re-
sonator. (a) Resonator dimensions: r4 = 6.S4 cm, w = 0.44 cm, s =
0.30 cm, h = 0.156 cm. Substrate material Polygnide (r4 is the outer
radius of the outer ring). (b) Resonator dimensions: r4 = 6.S4 cm,
w = 0.44 cm, s = 0.05 cm, h = 0.156 cm. Substrate material PolY-
guide.

443

shows the measured field dktributions of two adjoint resonances of

a resonator 1) with large dktance s between the lines and 2) with

small distance s between the lines. The field distributions have

been measured at p = 180° with the excitation at ~ = OO. The

resonances are principally, as Fig. 3 shows, resonances of the single

rings; the field dktribution is very unsymmetrical, though the

characteristics of the even and the odd modes of a symmetrical

straight line resonator still can be detected (e.g., zero of the “odd
mode” between the lines). Nevertheless the field dktributions
clearly show that no pure even or odd mode can be excited.

To find a method to calculate the resonance frequencies of the

double-ring resonator approximately, three different methods have

been examined. Firstly, a mean radius rn = (r~. + r~,) /2 (r-~. is

the mean radius of the outer ring, and rnt is the mean radius of the
inner ring) can be defined, to calculate the resonance frequencies

by assuming that an even and an odd mode are excited on the ring
resonator (mean circumference 1~ = 2m-n). This leads to the

resonance frequencies

f, . _3xL m.cO

L (Ceffe)lfz
f, =

Zm(%ffo) ‘/’ ‘
‘m,n = 1,2,. . . (4)

where e.f~. and c.ff. are the effective dielectric constants of the even

and the odd modes on a straight coupled microstrip line; co is the
phase velocity of light in vacuum.

As Fig. 4 shows, the so calculated resonance frequencies are in

quite good agreement with experimental results, as long as the

distance between the lines is small (s <0.1 cm for a resonator on
Polyguide material, h = 0.156 cm). For larger values of s the agree-

m~nt between theory and experiment becomes worse. The theoretical
resonance frequencies of the “even” and the “odd mode” become
identical for large values of .s, whereas the differences between the
experimental resonance frequencies of the “even” and the “odd
mode” become larger with growing s.

A second approximation for the resonance frequencies can be
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Fig. 4. Resonance frequencies of the double-ring resonator as a function
of the distance s between the rings. — calculated by (4), – ‘–-–.
calculated by (5), — O— O— experimental results. Resonator di-
mensions: T4 = 6.S4 cm = const, w = 0.44 cm, h = 0.156 cm. Sub-
strate material Pol ygnide (r* is the outer radius of the outer ring).



444 IEEE TRANSACITONS ON MICROWAVE TREORY AND TECHNIQUES, MAY 1975

derived by assu,ning that the resonances are those of the single
rings. This leads to the resonance frequencies

n.co
f, =

m-co

27rrmo(ceff) 112
f, =

27rrm;(.eff) 112‘
rrl,n=l,2,... (5)

where c.ff is the effective dielectric constant of the single microstrip

Iineof thesamewidthw asthe resonator has. Asthefield distribu-

tions in Fig. 3 show, (5) should be at least a first approximation
for the resonance frequencies, because the resonances are mainly

those of the single rings. Fig. 4 shows that (5) is quite a good ap-
proximation, especially the growing difference betweenfl and f,;
with growing distance, s is described quite well. Up to the fifth higher
order resonance (n = 5, m = 5), the accuracy of (5) is better than

3percent forallresonators which have been examined (0.05cm <s
<0.5 cm, Polyguide material, e, = 2.32, h = 0.156 cm), whereae

the agreement between (4) and the experimental results is not so
good (accuracy of about 5percent for fl and about 9percentforfz,

m=4, n=4, ands=0.5 cm).
As has been shown in Section II, the unrolled double-ring resonator

is the straight double-line resonator of different line lengths as

shown in Fig. 1. So the n.~o-resonance frequencies of the straight
doubleline resonator should be an approximation for the resonance
frequencies of the double-ring resonator. Fig. 5 shows the comparison
between the n.&-resonance frequencies of the straight double-line
resonator and the measured resonance frequencies of the double-

ring resonators. The agreement between theory and experiment is
excellent for all values of s, as long as the mode numbers n,m are
small (n,rn < 3). The deviation between theory and experiment
increases with the increasing value of n,m. This is due to the fact that

with larger n,m (meaning with increz~ing resonance frequencies)

n,m
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I?ig. 5. Resonance frequencies of the double-ring resonator as a func-
tion of the distance s between the rings. — calculated by (3), o
experimental results. Resonator dimensions as in Fig. 4.

the difference Al of the circumferences of the two rings becomes of

the order x,/2, which leads to a bad approximation of the doubl+
ring resonator by the straight double-line resonator.

In conclusion, as far as we think, the doublering resonator princi-

pally is not a good arrangement to measure the phase velocities of

the even and the odd modes of a coupled microstrip line. Only in

the case of very closely coupled lines can it be used to measure
z!~h~and ?)~ho,for in thk case all three described theories are good

apprc)ximations for the resonance frequencies and, e.g., (4) can be
used to measure e.rf. and c.rfa. Furthermore the mean circumference
of the resonator in thk case should be larger than 5k~ to avoid the
influence of the curvature of the lines on the resonance frequencies
(see, e.g , [5]).
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A Coupled-Line Model for Dispersion in

Parallel-Coupled Microstrips

HERBERT J. CARLIN, FELLOW, IEEE, AND
PIER P. CIVALLERI, MEMBER, IEEE

Abstnzcf—A new circuit model is derived for parallel-coupled

microstrip consisting of two separate pairs of coupled lines. Each
pair consists of a homogenoeus TEM line coupled to a homogeneous

TE line. One pair represents the hybrid even mode, the other rep-
resents the odd mode. Data csfculated from the model are compared

with experimental dispersion data for various parallel-coupled micro-

strip geometries. Agreement is excellent.
The: procedure for deriving the equivalent circuit is an example of

a general technique for using coupled lines to model longitudinally
uniform but transversely inhomogeneous lossless waveguide.

The representation of fields in longitudinally uniform but trana-

verse~y inhomogeneous metallic-bound waveguides by the use of an
infinite number of coupled TE and TM transmission lines was first

introduced by Schelkunoff [1]. More recently, it was shown that by

appropriately truncating the Schelfmnofi representation, one can ob-
tain practical models consisting of a finite number of coupled lines,

from which the propagation functions of the structure can be approxi-
mated [2]. Moreover, even in cases in which the Schelknnoff param-
eters cannot be easily calculated, a practical coupled-line model can
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